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Figure 1: Qualitative and quantitative results of our Rip-NeRF and several representative baseline methods, e.g., Zip-NeRF [Bar-
ron et al. 2023], Tri-MipRF [Hu et al. 2023], etc. Rip-NeRF25k is a variant of Rip-NeRF that reduces the training iterations
from 120𝑘 to 25𝑘 for better efficiency. The first and second rows in the left panel are results from the multi-scale Blender
dataset [Barron et al. 2021] and our newly captured real-world dataset, respectively. Our Rip-NeRF can render high-fidelity and
anti-aliasing images from novel viewpoints while maintaining efficiency.

ABSTRACT
Despite significant advancements in Neural Radiance Fields (NeRFs),
the renderings may still suffer from aliasing and blurring artifacts,
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since it remains a fundamental challenge to effectively and effi-
ciently characterize anisotropic areas induced by the cone-casting
procedure. This paper introduces a Ripmap-Encoded Platonic Solid
representation to precisely and efficiently featurize 3D anisotropic
areas, achieving high-fidelity anti-aliased renderings. Central to
our approach are two key components: Platonic Solid Projection
and Ripmap encoding. The Platonic Solid Projection factorizes the
3D space onto the unparalleled faces of a certain Platonic solid,
such that the anisotropic 3D areas can be projected onto planes
with distinguishable characterization. Meanwhile, each face of the
Platonic solid is encoded by the Ripmap encoding, which is con-
structed by anisotropically pre-filtering a learnable feature grid, to
enable featurzing the projected anisotropic areas both precisely and
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efficiently by the anisotropic area-sampling. Extensive experiments
on both well-established synthetic datasets and a newly captured
real-world dataset demonstrate that our Rip-NeRF attains state-of-
the-art rendering quality, particularly excelling in the fine details
of repetitive structures and textures, while maintaining relatively
swift training times, as shown in Fig.1. The source code and data
for this paper are at https://github.com/JunchenLiu77/Rip-NeRF.
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1 INTRODUCTION
The epoch-making Neural Radiance Fields (NeRFs) [Mildenhall
et al. 2020] employ a neural network to represent the scene as
a continuous 5D function, which is defined as the radiance and
density along a ray at a certain 3D location and direction. They
have promoted significant progress in numerous tasks, e.g., novel
view synthesis [Chen et al. 2022; Martin-Brualla et al. 2021; Yuan
and Zhao 2023], geometry reconstruction [Wang et al. 2021; Chen
et al. 2023a], content generation [Chan et al. 2022; Peng et al. 2023],
simulation [Wu et al. 2023a; Wei et al. 2024] and automation [Zhu
et al. 2022; Park et al. 2023a; Zhu et al. 2023; Zhou et al. 2024].

The aliasing artifacts remain a challenging problem in NeRFs,
which are caused by the discrete sampling of the continuous physi-
cal world. As a pioneer, Mip-NeRF [Barron et al. 2021] proposed an
analytical integrated positional encoding for the purely implicit rep-
resentation to facilitate anti-aliasing rendering. However, both the
training speed and rendering quality of it are limited by the purely
implicit representation. To this end, Zip-NeRF [Barron et al. 2023]
and Tri-MipRF [Hu et al. 2023] proposed anti-aliasing mechanisms
based on the hybrid representation in the form of multi-sampling
and area-sampling (a.k.a.pre-filtering), respectively. Nevertheless,
multi-sampling inherently demands a large number of samples to
featurize a single area, which puts it in a dilemma between the
rendering quality and computational overhead. On the other hand,
area-sampling of Tri-MipRF is more efficient as it can directly featur-
ize a sub-volume. However, its isotropic mechanism significantly
limits the ability to represent anisotropic areas that are ubiqui-
tously induced by cone casting methods [Barron et al. 2022; Hu
et al. 2023] in the volume rendering. As shown in Fig. 2 (a), the
isotropic area-sampling cannot differentiate the anisotropic areas

(a) Isotropic area-sampling (b) Anisotropic area-sampling

Area1 Area2

Figure 2: The two anisotropic areas Area1 and Area2 from
different cones are ambiguously mapped to the same sam-
pling area under the isotropic area-sampling (a), while are
distinguishable under anisotropic area-sampling (b).
from different cones, which leads to ambiguities in the representa-
tion. Consequently, as shown in Fig. 1, blurriness on the surface of
the microphone can be observed under this isotropic area-sampling.

In this paper, we propose a Ripmap-encoded Platonic solids rep-
resentation, termed Rip-NeRF, for high-fidelity anti-aliased neural
radiance fields. It enables featurizing 3D areas more precisely with
various shapes using only one sample per area, such that anisotropic
areas from different cones are distinguishable under our represen-
tation, as shown in Fig. 2 (b). The key to achieving this lies in two
techniques, i.e., the Platonic Solid Projection and the Ripmap En-
coding. On one hand, the Platonic Solid Projection is a 3D space
factorization method, which projects 3D areas onto the unparalleled
faces of Platonic solids. By doing so, we can precisely represent
3D scenes with 2D feature grids, rather than 3D volumes, and the
memory consumption is significantly reduced from𝑂 (𝑛3) to𝑂 (𝑛2).
Note that, the orthogonal tri-plane representation adopted in [Chan
et al. 2022; Hu et al. 2023] can be derived from a regular hexahe-
dron (cube) in this perspective. On the other hand, the Ripmap
Encoding can featurize the projected anisotropic 2D areas with a
Ripmap [McReynolds et al. 1998] (a.k.a.anisotropic Mipmap), which
is a feature grid pre-filtered with anisotropic kernels to represent
the face of the Platonic solid. Compared with the tri-plane factor-
ization and isotropic area-sampling (Mipmap) of Tri-MipRF [Hu
et al. 2023], our Platonic Solid Projection together with the Ripmap
Encoding enables more precisely featurizing anisotropic 3D areas
in an efficient pre-filtering manner, such that sharper and more
accurate details on the repetitive patterns of microphone can be
reconstructed and rendered as shown in Fig. 1.

To evaluate the effectiveness of our Rip-NeRF, we conduct exten-
sive experiments on both well-established public benchmarks and
a newly captured real-world dataset, where the quantitative and
qualitative results reveal that our Rip-NeRF achieves state-of-the-
art rendering quality while maintaining efficient reconstruction.
Besides, the ablation studies also demonstrate the effectiveness of
our individual proposed components, i.e.the Platonic Solid Projec-
tion and the Ripmap Encoding. Furthermore, our Platonic Solid
Projection introduces a flexible trade-off between rendering quality
and efficiency, e.g., training time and GPU memory consumption,
by selecting different Platonic solids with a certain number of faces.
Our contributions are summarized below.

• We propose a 3D space factorization method, Platonic Solid
Projection, to represent a 3D scene with the 2D faces of a
Platonic solid, such that the anisotropic 3D areas can be
projected onto planes with distinguishable characterization.

https://github.com/JunchenLiu77/Rip-NeRF
https://doi.org/10.1145/3641519.3657402
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• We propose to represent the faces of a Platonic solid by
Ripmap Encoding, such that the projected anisotropic 2D ar-
eas can be precisely and efficiently featurized by the anisotropic
area-sampling.

• Our Rip-NeRF achieves state-of-the-art rendering quality on
both the public benchmarks and a newly captured real-world
dataset while maintaining efficient reconstruction. And it
enables a flexible trade-off between quality and efficiency.

2 RELATEDWORK
2.1 Hybrid Representations in Neural

Rendering
With the rise of deep learning, neural rendering, especially neural
radiance fields (NeRF) [Mildenhall et al. 2020], has drawn increasing
attention in novel view synthesis [Tancik et al. 2023; Takikawa
et al. 2022; Bemana et al. 2022; Karnewar et al. 2022; Park et al.
2023b; Zhang et al. 2022a; Belhe et al. 2023; Li et al. 2023], avatar
reconstruction [Xu et al. 2023; Wang et al. 2022; Duan et al. 2023;
Kirschstein et al. 2023; Işık et al. 2023; Zheng et al. 2023; Dong
et al. 2023; Jiang et al. 2023; Lin et al. 2023; Trevithick et al. 2023],
reconstruction from sparse views [Somraj and Soundararajan 2023;
Somraj et al. 2023; Zhang et al. 2022b; Lao et al. 2024], reconstruction
of large-scale scenes [Wu et al. 2023d], scene editing [Gong et al.
2023; Huang et al. 2023; Zhuang et al. 2023; Zeng et al. 2023;Wu et al.
2023c,b; Jiang et al. 2022], and dynamic scene reconstruction [Lin
et al. 2022; Park et al. 2021]. NeRF methods typically rely on neural
networks to act as continuous representations. However, the pure
implicit representations are computationally intensive and hard to
represent high-frequency details.

On the other hand, recent works explored representing 3D scenes
with explicit data structures, e.g., octrees [Yu et al. 2021; Shu et al.
2023], sparse voxels [Fridovich-Keil et al. 2022], and VDB [Yan et al.
2023]. Nevertheless, explicit representations often suffer from large
storage footprints and low rendering quality. To this end, hybrid
representations, combining a tiny MLP and explicit data structures,
like hash table [Müller et al. 2022], tri-plane [Chan et al. 2022],
and Vector-Matrix [Chen et al. 2022], have emerged to improve
rendering quality and efficiency [Reiser et al. 2023; Duckworth et al.
2023; Gupta et al. 2023; Chen et al. 2023b]. But these representations
still suffer from aliasing artifacts, due to the ray casting procedure
that discretely samples a continuous signal.

2.2 Anti-Aliasing in Neural Radiance Fields
Essentially, aliasing occurs as the overlapping frequency compo-
nents due to insufficient sampling rates. Therefore, to alleviate this
issue, we can directly increase the sampling rate by multi-sampling,
or appropriately decrease the frequency of the scene by pre-filtering
(a.k.a.area-sampling). In the neural radiance fields (NeRF) [Milden-
hall et al. 2020] context, Mip-NeRF [Barron et al. 2021] pioneered
the anti-aliasing for NeRF by the integrated positional encoding
that enables area-sampling. Mip-NeRF 360 [Barron et al. 2022] fur-
ther explored the anti-aliasing for unbounded scenes to improve the
applicability. However, both the training and rendering of them are
computationally intensive due to their pure implicit representation.

Recently, Zip-NeRF [Barron et al. 2023] presented amulti-sampling
strategy to enable anti-aliasing for more efficient hybrid grid-based
representation [Müller et al. 2022]. However, multi-sampling in-
herently demands many samples to featurize a single area, which
puts it in a dilemma between the rendering quality and computa-
tional overhead. Conversely, Tri-MipRF [Hu et al. 2023] proposed
an area-sampling strategy that models the scene as three orthogo-
nal mipmaps, benefiting from the efficiency and compactness of the
hybrid plane-based representation [Chan et al. 2022]. Nevertheless,
its isotropic mechanism significantly limits the ability to represent
anisotropic areas induced by cone casting. In contrast, our method
not only enables precisely featurizing anisotropic 3D areas in an
efficient area-sampling manner but also maintains the compactness
of the hybrid plane-based representation.

3 METHOD
3.1 Overview
Given a set of calibrated multi-view images, our goal is to render
high-fidelity anti-aliasing images in a NeRF [Mildenhall et al. 2020]
fashion. Following [Müller et al. 2022; Barron et al. 2023; Hu et al.
2023; Chen et al. 2022], our Rip-NeRF adopts a hybrid representa-
tion, to benefit from both the efficiency and flexibility of explicit
and implicit representations. As shown in Fig. 3, to render a pixel,
we cast a cone for it and divide the cone into multiple conical frus-
tums, similar to [Barron et al. 2021, 2022, 2023; Hu et al. 2023],
which effectively avoids the discrete point-based sampling of the
continuous signals in the image plane. To featurize a conical frus-
tum, multi-sampling [Barron et al. 2023] and area-sampling [Hu
et al. 2023] are two types of strategies in the hybrid representa-
tion. For the efficiency consideration, we adopt the latter one to
first characterize the conical frustum by an anisotropic 3D Gauss-
ian [Barron et al. 2021] with the mean and covariance as (𝝁, 𝚺),
and then featurize it with our proposed Platonic Solid Projection and
Ripmap Encoding. Different from the Tri-Mip encoding [Hu et al.
2023] which roughly characterizes the frustum as isotropic balls,
our Platonic Solid Projection together with Ripmap Encoding can
accurately featurize the anisotropic 3D Gaussians, which are to be
presented in the following sections. After featurizing the conical
frustums, we employ a tiny MLP 𝐹𝜃 to estimate the color 𝑐 and
density 𝜎 of the frustums, and then render the pixel color by the
volume rendering [Mildenhall et al. 2020]. The whole system is op-
timized end-to-end with a photometric loss between the rendered
and observed images.

3.2 Ripmap Encoding
Before introducing how to featurize an anisotropic 3D Gaussian
by projection, we first present the featurization of an anisotropic
2D Gaussian, which is the basis of the 3D case. Tri-MipRF [Hu
et al. 2023] proposed to use a 2D Mipmap containing learnable
features to support area sampling of an isotropic disc. However, as
shown in Fig. 4 (a), the isotropic Mipmap structure of Tri-MipRF
makes its sampling area a square, which can not precisely charac-
terize the projected anisotropic 2D Gaussian, whose axis-aligned
bounding-box is essentially a rectangle. In conventional graphics,
anisotropic area sampling is proposed to address the aliasing is-
sue when the view direction closely aligns with an axis of the UV
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Platonic Solid Projection

Platonic Solids

Cone Casting
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Ripmap
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Figure 3: Overview of our Rip-NeRF. We first cast a cone for each pixel, and then divide the cone into multiple conical frustums,
which are further characterized by anisotropic 3D Gaussians parameterized by their mean and covariance (𝝁, 𝚺). Next, to
featurize a 3D Gaussian, we project it onto the unparalleled faces of the Platonic solid, denoted as {P𝑖 | 𝑖 = 1, ..., 𝑛} to form a 2D
Gaussian (𝝁proj, 𝚺proj), while the Platonic solid’s faces are represented by the Ripmap Encoding with learnable parameters.
Subsequently, we perform tetra-linear interpolation on the Ripmap Encoding to query corresponding feature vectors 𝑓𝑖 for the
2D Gaussian, where the position (𝑝𝑥 , 𝑝𝑦) and level (𝑙𝑥 , 𝑙𝑦) used in the interpolation are determined by the mean and covariance
(𝝁proj, 𝚺proj) of the 2D Gaussian, respectively. Finally, feature vectors 𝑓𝑖 from all Platonic solids’ faces and the encoded view
direction 𝑑 are aggregated together to estimate the color 𝑐 and density 𝜎 of the conical frustums by a tiny MLP 𝐹𝜃 .

(b) Anisotropic area sampling(a) Isotropic area sampling

Figure 4: Comparison between isotropic (a) and anisotropic
(b) area sampling in Mipmap and Ripmap, for characterizing
the projected Gaussian.

texture since the occurrence of aliasing is pronounced due to the
significant variance in sampling density across the texture space.
Among various solutions [Heckbert 1986], Ripmap [McReynolds
et al. 1998] is a popular one due to its effectiveness and simplicity,
which dynamically adjusts the the aspect ratio of the pre-filtering
kernel based on the angle of incidence. Inspired by this, we propose
Ripmap Encoding to employ a Ripmap with learnable parameters to
enable anisotropic area-sampling in the neural rendering context,
such that the anisotropic ellipsoidal footprint of a Gaussian can be
characterized more precisely, as shown in Fig. 4 (b).

Ripmap Encoding construction. The Ripmap Encoding R contains
𝐿 × 𝐿 levels, while the base level R0, 0 is a 2D feature grid F with
the shape of 𝐻 ×𝑊 ×𝐶 , where the 𝐻,𝑊 ,𝐶 are the height, width,
and number of channels, respectively. Other levels are constructed
by performing anisotropic average pooling Avg2×1 and Avg1×2 on

the lower level feature grid:

R𝑖, 𝑗 =


Avg2×1

(
R𝑖, 𝑗−1) if 𝑗 ≠ 0

Avg1𝒙2
(
R𝑖−1, 𝑗 ) if 𝑖 ≠ 0 & 𝑗 = 0

F otherwise,
(1)

where 𝑖 and 𝑗 are the indices of the levels in the 𝑥 and 𝑦 directions,
respectively. Note that, only the base level R0, 0 is learnable, while
other levels are derived from it, which makes the Ripmap Encoding
compact and consistent among levels.

Ripmap Encoding querying. Once the Ripmap Encoding is con-
structed, we can featurize an anisotropic 2D Gaussian by querying
the Ripmap Encoding using the tetra-linear interpolation:

𝒇 = R(𝑝𝑥 , 𝑝𝑦, 𝑙𝑥 , 𝑙𝑦), (2)
where (𝑝𝑥 , 𝑝𝑦) and (𝑙𝑥 , 𝑙𝑦) are the position and level used in
the interpolation, respectively. The formal mathematical expres-
sion of tetra-linear interpolation is presented in the supplementary
material. Since the querying position and level correspond to the
location and size of the sampling area, respectively, we derive them
from the mean and covariance (𝝁proj, 𝚺proj) of the Gaussian as:

𝑝𝑑 = 𝜇𝑑

𝑙𝑑 = log2

(
𝑤𝜎𝑑

𝑟

)
, 𝑑 ∈ {𝑥,𝑦},

(3)

where 𝜎𝑥 , 𝜎𝑦 =
√︁
diag(𝚺proj) are the standard deviations along the

x and y axes, respectively, 𝑤 is a hyper-parameter to adjust how
much probability mass of the Gaussian footprint is covered, and 𝑟
is the radius of the bounding sphere for the reconstructed scene.

3.3 Platonic Solid Projection
Factorizing 3D space into a group of 2D planes has been proven to
be effective and compact [Peng et al. 2020; Chan et al. 2022; Hu et al.
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PSNR ↑ SSIM ↑ LPIPS ↓
Train ↓ Size ↓ Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg.

NeRF w/o Larea 3 days 5.00 MB 31.20 30.65 26.25 22.53 27.66 0.950 0.956 0.930 0.871 0.927 0.055 0.034 0.043 0.075 0.052
NeRF [Mildenhall et al. 2020] 3 days 5.00 MB 29.90 32.13 33.40 29.47 31.23 0.938 0.959 0.973 0.962 0.958 0.074 0.040 0.024 0.039 0.044
TensoRF [Chen et al. 2022] 19 mins 71.8 MB 32.11 33.03 30.45 26.80 30.60 0.956 0.966 0.962 0.939 0.956 0.056 0.038 0.047 0.076 0.054
Instant-NGP [Müller et al. 2022] 5 mins 64.1 MB 30.00 32.15 33.31 29.35 31.20 0.939 0.961 0.974 0.963 0.959 0.079 0.043 0.026 0.040 0.047
Mip-NeRF [Barron et al. 2021] 3 days 2.50 MB 32.63 34.34 35.47 35.60 34.51 0.958 0.970 0.979 0.983 0.973 0.047 0.026 0.017 0.012 0.026
Tri-MipRF [Hu et al. 2023] 5.5 mins 48.0 MB 33.57 35.21 35.96 36.46 35.30 0.962 0.975 0.982 0.987 0.976 0.052 0.029 0.019 0.013 0.028
Zip-NeRF [Barron et al. 2023] 4.5 hrs 592 MB 34.21 36.55 37.88 38.13 36.69 0.974 0.985 0.990 0.992 0.985 0.036 0.019 0.014 0.015 0.021
3DGS [Kerbl et al. 2023] 7.5 mins 27.0 MB 29.00 30.94 32.06 28.21 30.05 0.946 0.965 0.976 0.964 0.963 0.064 0.037 0.024 0.030 0.039
Rip-NeRF25k 32 mins 160 MB 34.30 35.94 36.92 37.47 36.16 0.966 0.978 0.984 0.989 0.979 0.045 0.025 0.016 0.011 0.024
Rip-NeRF (Ours) 2.6 hrs 160 MB 35.30 37.01 38.07 38.54 37.23 0.973 0.983 0.988 0.991 0.984 0.037 0.019 0.011 0.008 0.019

Table 1: Quantitative performance on the multi-scale Blender dataset [Barron et al. 2021]. We compared our Rip-NeRF,
and its variant, Rip-NeRF25k, which reduces the training iterations from 120𝑘 to 25𝑘 for fast reconstruction, against several
representative methods. The best, second-best, and third-best results are marked in red, orange, and yellow, respectively.

(a) Projection on orthogonal tri-plane (b) Projection on an additional plane

Figure 5: Two 3D ellipsoids, whose major axes are aligned
along two different body diagonals of a cube, share the same
2DAABBs on the orthogonal tri-plane (a),making them indis-
tinguishable under the Ripmap encoding. However, their dif-
ference can be captured by an additional different-oriented
plane (b).

2023; Fridovich-Keil et al. 2023; Cao and Johnson 2023; Chen et al.
2022]. Therefore, with the presented Ripmap Encoding for 2D area-
sampling, the key to precisely featurizing anisotropic 3D Gaussians
is how to project them onto the 2D planes. Tri-MipRF [Hu et al.
2023] projects isotropic 3D spheres onto three orthogonal 2D planes,
however, this strategy falls short when dealing with anisotropic 3D
Gaussians. The 3D Gaussians, produced by the cone casting, are
almost randomly distributed in the Euclidean space with various
shapes due to the arbitrariness of the intrinsic and extrinsic camera
parameters. Thus, different 3D Gaussians may have the same 2D
Axis-Aligned Bounding Box (AABB) when being projected onto
the planes, e.g., two 3D ellipsoids with major axes aligned along
two different body diagonals of a cube in Fig. 5 (a), which makes
them indistinguishable under the Ripmap Encoding. To address
this issue, we propose to project the 3D Gaussians onto a larger
number of planes, which are appropriately distributed in the 3D
space, and then concatenate the features queried from those planes
together, such that the 2D AABBs of different Gaussians can be
more distinguishable and the derived features of Gaussians more
discriminative, as shown in Fig. 5 (b).

Orientations and axes of the planes. Based on the above example,
we intuitively think the more diverse the planes are oriented, the
better their representation capability. To verify it, we tried three
methods to evenly distribute the planes (the Platonic solids’ faces,
golden spiral [Keinert et al. 2015], and spherical blue noise [Wong

and Wong 2018] ). We also tried one control group method to adopt
spherical white noise to determine the planes, which are slightly
less diverse. We find the evenly distributed group performs much
better than the control group and the three even groups have similar
performance. Therefore, for simplicity and good performance, we
opted for the Platonic Solid Projection that projects anisotropic 3D
Gaussians into the unparalleled faces of a specific Platonic solid,
i.e., tetrahedron, cube, octahedron, dodecahedron, and icosahedron,
whose faces are congruent (identical in shape and size) regular
polygons that have equivalent dihedral angles. Note that, Mip-NeRF
360 [Barron et al. 2022]also adopted a similar strategy to derive
off-axis integrated positional encoding features for 3D Gaussians.
However, we propose the Platonic solid projection to explicitly
project Gaussians onto planes for the area sampling using Ripmap
encoding. Our Platonic Solid Projection also provides a flexible
trade-off between rendering quality and efficiency by selecting
different Platonic solids with a certain number of faces, as to be
demonstrated in Tab. 4. Specifically, we denote the planes and their
outward normals as {P𝑖 | 𝑖 = 1, ..., 𝑛} and {𝝓𝑖 ∈ R3 | 𝑖 = 1, ..., 𝑛},
respectively, where 𝑛 is the number of faces of the selected Platonic
solid. And the local 2D axes x𝑖 ∈ R3 and y𝑖 ∈ R3 of the plane P𝑖 ,
which is used to allocate grids for the Ripmap Encoding, should be
perpendicular to the plane’s normal 𝝓𝑖 . Given the unit vectors 𝑿 , 𝒀
and 𝒁 of the world coordinate system, we empirically define them
as:

x𝑖 = 𝑿 y𝑖 = 𝒀 if 𝝓𝒊 = 𝒁 ,
x𝑖 = 𝒁 × 𝝓𝑖 y𝑖 = x𝑖 × 𝝓𝑖 otherwise (4)

Featurization of anisotropic 3D Gaussians. After defining the ori-
entations and axes of the planes, we can project the anisotropic 3D
Gaussians, characterized by mean 𝝁 and covariance 𝚺, onto each
plane P𝑖 :

M𝑖 = [x𝑖 , y𝑖 ],

𝝁 𝒊
proj = M𝑇

𝑖 𝝁,

𝚺
𝒊
proj = M𝑇

𝑖 𝚺M𝑖 ,

(5)

where M𝑖 ∈ R3×2 is the projection matrix for mapping the 3D
world coordinate system into the 2D coordinate system of plane
P𝑖 , 𝝁 𝒊

proj and 𝚺
𝒊
proj are the mean and covariance of the projected

2D Gaussians on plane P𝑖 . Then, we can query a feature vector 𝒇 𝑖
from the Ripmap Encoding of each plane P𝑖 using Eq. 2 and Eq. 3.
Finally, we concatenate all the feature vectors {𝒇 𝑖 | 𝑖 = 1, ..., 𝑛}
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from the corresponding planes {P𝑖 | 𝑖 = 1, ..., 𝑛} to form the final
feature vector 𝒇 of the 3D Gaussian.

4 EXPERIMENTS
4.1 Implementation Details
Since our Rip-NeRF acquires the 3D structure only from the cali-
brated multi-view 2D images, we optimize the whole system end-
to-end with a photometric loss, assessing the discrepancy between
rendered pixels and captured images. To make the photometric loss
area-aware, we scale the loss for each pixel by incorporating the
area of its footprint on the image plane, denoted as “area loss”Larea,
following [Barron et al. 2021; Hu et al. 2023]. Except for the ablation
study, we set the shape of the base level in the Ripmap Encoding
R0, 0 to𝐻 = 512,𝑊 = 512, and𝐶 = 16, aligned with Tri-MipRF [Hu
et al. 2023]. For the Platonic Solid Projection, we by default employ
the icosahedron, which contains ten unparalleled faces. We set the
value of hyper-parameter𝑤 in Eq. (3) to 2.0, which is used to adjust
how much probability mass of the Gaussian footprint is covered.

For efficiency, we not only employ the tiny-cuda-nn [Müller
2021] library for its highly optimized MLP implementation but also
implement our Platonic Solid Projection and Ripmap Encoding in
CUDA kernels. Besides, we also adopt the NerfAcc [Li et al. 2022]
library to incorporate a binary occupancy grid to indicate empty
vs.non-empty space similar to [Müller et al. 2022; Hu et al. 2023],
which enables efficiently skipping samples in the empty area. All
the modules are integrated into the PyTorch framework [Paszke
et al. 2019] since PyTorch is widely used in the research community.
Training of our Rip-NeRF is conducted using the AdamW opti-
mizer [Loshchilov and Hutter 2019] with 120𝑘 iterations. We also
present a variant of our method, Rip-NeRF25k, which is trained with
25𝑘 iterations, for faster reconstruction that only slightly sacrifices
the rendering quality. We apply a weight decay of 1 × 10−5 and an
initial learning rate of 2×10−3, which is modulated using PyTorch’s
MultiStepLR scheduler. Following Tri-MipRF [Hu et al. 2023], the
learning rate for Ripmap encoding is scaled up by 10.0 times since
it directly represents the scene.

4.2 Evaluation on the Muti-scale Blender
Dataset

Following Mip-NeRF [Barron et al. 2021] and Tri-MipRF [Hu et al.
2023], to evaluate the capability of rendering anti-aliasing and fine
image details, we benchmarked our Rip-NeRF on the multi-scale
Blender dataset [Barron et al. 2021], which is a combination of the
Blender dataset [Mildenhall et al. 2020] and its down-scaled ver-
sions with a factor of 2, 4, and 8. We compared our Rip-NeRF with
the representative cutting-edge methods, i.e., NeRF [Mildenhall
et al. 2020], Mip-NeRF [Barron et al. 2021], TensoRF [Chen et al.
2022], Instant-NGP [Müller et al. 2022], Tri-MipRF [Hu et al. 2023],
Zip-NeRF [Barron et al. 2023], and 3D Gaussian Splatting (denoted
as 3DGS) [Kerbl et al. 2023]. Since some methods are not optimized
for captures with variable distances or multiple resolutions, we
incorporate the area loss Larea with all the methods for a fair com-
parison. All the methods are retrained on the combined training
and validation splits and evaluated on the testing split, using their
official implementations, in alignment with Tri-MipRF [Hu et al.
2023].

Quantitative results. The quantitative results are presented in
Tab. 1, where we assess rendering quality using PSNR, SSIM [Wang
et al. 2004], and VGG LPIPS [Zhang et al. 2018] metrics. Additionally,
to evaluate the efficiency of computation and storage, we report
the average training time on an NVIDIA A100-SXM4-80GB GPU
and the model size. We can see that methods without anti-aliasing
design, i.e., NeRF, TensoRF, Instant-NGP, and 3DGS, perform poorly
in the multi-scale setting, which is the consequence of the discrete
sampling in the continuous physical space. Importantly, our Rip-
NeRF consistently outperforms all the other cutting-edge methods,
even the strong Tri-MipRF and Zip-NeRF baselines, in terms of
PSNR and LPIPS metrics. Though Zip-NeRF performs slightly better
in terms of the SSIM metric, it requires almost double training
time (4.5h vs.2.6h) and four times of model size (592 MB vs.160
MB). Notably, the variant of our method that reduces the training
iterations from 120𝑘 to 25𝑘 , Rip-NeRF25k, also achieves comparable
results to Zip-NeRF, while requiring only 11.76% training time (4.5h
vs.32min). Additionally, the GPU memory consumption during
training of Zip-NeRF is about 80 GB, which is unfeasible for some
consumer-level GPUs, e.g.the NVIDIAGeForce RTX 4090 etc. , while
that of Rip-NeRF is only 20 GB. And, the rendering speed of our Rip-
NeRF is about 3 FPS in this experimental setting, which outperforms
Zip-NeRF (0.25 FPS). Admittedly, Zip-NeRF is designed for the
more general unbounded scenes and we believe its performance
can be further optimized for bounded objects. Nevertheless, our
work demonstrates the effectiveness of area-sampling for high-
fidelity anti-aliased rendering. The effectiveness, efficiency, and
compactness of our Rip-NeRF are attributed to our Ripmap-Encoded
Platonic solid representation, which enables efficient anisotropic
area-sampling of the 3D space. In contrast, the multi-sampling
mechanism in Zip-NeRF is effective but not efficient enough, which
inherently demands a large number of samples to featurize a single
area, putting it in a dilemma between the rendering quality and
efficiency of computation and storage.

Qualitative results. To qualitatively evaluate the performance
of our Rip-NeRF, we compare it with Tri-MipRF [Hu et al. 2023]
and Zip-NeRF [Barron et al. 2023], since they are the most relevant
methods to our approach and perform well quantitatively in the
multi-scale setting. We compared the full-resolution renderings
of the three methods in Fig. 6 and the first row of Fig. 1 (teaser),
where we can see that our Rip-NeRF achieves the best rendering
quality, particularly in regions with challenging appearance and
geometry, such as the anisotropic specular highlights on the gong
in the “drums” scene, the slender rope on the “ship” scene, and the
periodic grids on the “mic” scene. Besides evaluating full-resolution
renderings, we also present the renderings of the three methods at
1/2, 1/4, and 1/8 resolutions in Fig. 7, to demonstrate the effectiveness
of our Rip-NeRF in anti-aliasing and preserving fine details. We can
see that in scenarios with lower resolution, our Rip-NeRF method
exhibits superior performance compared to the other two methods.
Notably, the periodic features on the microphone, which appear
blurred in images rendered by Tri-MipRF and exhibit aliasing (“jag-
gies”) in those by Zip-NeRF, are rendered with higher fidelity in
our results. These qualitative findings further corroborate the effi-
cacy of Rip-NeRF in producing high-fidelity, anti-aliasing images,
demonstrating its robustness across various resolution settings.
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PSNR ↑ SSIM ↑ LPIPS ↓
SRN [Sitzmann et al. 2019] 22.26 0.846 0.170
LLFF [Mildenhall et al. 2019] 24.88 0.911 0.114
Neural Volumes [Lombardi et al. 2019] 26.05 0.893 0.160
NeRF [Mildenhall et al. 2020] 31.74 0.953 0.050
DVGO [Sun et al. 2022] 31.95 0.957 0.053
TensoRF [Chen et al. 2022] 33.14 0.963 0.047
Instant-NGP [Müller et al. 2022] 33.18 0.963 0.045
3DGS [Kerbl et al. 2023] 34.44 0.975 0.028
Mip-NeRF [Barron et al. 2021] 33.09 0.961 0.043
Tri-MipRF [Hu et al. 2023] 33.90 0.964 0.050
Zip-NeRF [Barron et al. 2023] 34.76 0.977 0.032
Rip-NeRF25k 34.92 0.969 0.042
Rip-NeRF (Ours) 35.44 0.973 0.037

Table 2: Quantitative performance on the single-scale
Blender dataset [Mildenhall et al. 2020]. We compared our
Rip-NeRF, and its variant, Rip-NeRF25k, against several rep-
resentative methods. The best, second-best, and third-best
results are marked in red, orange, and yellow, respectively.

4.3 Evaluation on the Single-scale Blender
Dataset

The single-scale Blender dataset [Mildenhall et al. 2020] renders
the image at a fixed resolution and distance, which is consistent
with the assumption of methods without anti-aliasing design, e.g.,
NeRF [Mildenhall et al. 2020], TensoRF [Chen et al. 2022], Instant-
NGP [Müller et al. 2022], and 3DGS [Kerbl et al. 2023]. Even though
this scenario is not our primary focus, we still compared our Rip-
NeRF and Rip-NeRF25k on this dataset against several representative
methods. The quantitative results of this comparison are detailed in
Tab. 2, where we can observe that our Rip-NeRF and Rip-NeRF25k
perform the best and second-best, respectively, in terms of the
PSNR metric, while achieving comparable results to the Zip-NeRF
and 3DGS in terms of the SSIM and LPIPS metrics. It demonstrates
that our Rip-NeRF is also effective in the single-scale setting, even
though it is not optimized for this scenario.

4.4 Evaluation on Real-world Captures
To further verify the practicality of our approach, we applied our
Rip-NeRF to a newly captured real-world dataset. We captured four
challenging objects that contain fine periodic structures using an
iPhone. We applied Structure-from-Motion (SfM) to the image se-
quence to estimate camera parameters and then employed image
segmentation to separate the targets from the background scene.
We also applied a rigid transform and rescaling to the poses recon-
structed by SfM, aiming to center and scale the target object in a
manner similar to that used in the Blender dataset. Each captured
scene consists of 400 to 420 images with a resolution of 3840 ×
2160, down-sampled with factors of 2, 4, 8 and 16 (instead of 1, 2,
4, and 8 in Multi-scale Blender) due to its relatively high original
resolution. For reconstruction, we uniformly sampled 50% of the
images, reserving the remaining portion for evaluation. This setup
makes the number of images and resolution of two splits similar to
the previous Multi-scale Blender Dataset. However, noisy camera
poses, motion blur, and defocus blur imply greater challenges to
reconstruction than synthetic data.

We compared our Rip-NeRF with Tri-MipRF [Hu et al. 2023] and
Zip-NeRF [Barron et al. 2023] since they show strong capabilities
in the previous experiments. Three example results are shown in
Fig. 8, where we can clearly observe that our Rip-NeRF renders
more accurate intricate structures and appearance details. Addi-
tionally, quantitative results of the whole dataset in Tab. 3 and the
PSNR/SSIM values displayed below each image further affirm the
effectiveness of our approach for real-world captures.

4.5 Ablation study
In our ablation studies, we evaluated key components of ourmethod.
Rip-NeRF w/o PSP utilized orthogonal triplanes with anisotropic
area sampling to assess the impact of excluding Platonic Solid
Projection. For examining the role of anisotropic area sampling,
Rip-NeRF w/o RE employed isotropic mipmaps, adapting the Tri-
MipRF [Hu et al. 2023] framework with 10 unparalleled planes from
an icosahedron, using nvdiffrast [Laine et al. 2020] for mipmap
construction. The two ablation experiments are both trained for
25000 iterations.

The quantitative results from our experiments on the multi-scale
Blender dataset are detailed in Table 4. Our findings reveal that
the independent application of each component—Platonic Solid
Projection (PSP) and Ripmap Encoding (RE) —yields only modest
improvements. Specifically, employing PSP alone results in a mere
0.37% increase in average PSNR, while using solely RE slightly low-
ers all three metrics. However, when PSP and RE are combined
in our Rip-NeRF25𝑘 model, they produce a synergistic effect: an
average 3.44% increase in PSNR, with SSIM and LPIPS significantly
surpassing those of Tri-MipRF [Hu et al. 2023]. This synergy sug-
gests that the whole is greater than the sum of its parts. While PSP
alone improves alignment of the ellipsoid footprint with the 2D
grid, it still relies on square query areas. Ripmap Encoding with
only 3 planes are not capable of modeling the nuance of different
Gaussians as well.

In our ablation study focusing on the choice of Platonic Solid, we
experimented with cubes (PS3), tetrahedrons (PS4), and dodecahe-
dron (PS6). In this ablation experiment, we conducted experiment
by increasing grid resolution for PS3, PS4, and PS6 to keep the total
parameter count the same as our full method (160MB). From PS3
to our full model (PS10), the training time increases 28%. Interest-
ingly, adding planes does not always correlate with performance
improvements. For instance, despite the addition of one plane in
PS4 compared to PS3, there was a decrease in PSNR, SSIM, and
LPIPS. Conversely, applying more planes to the tri-mip encoding
method yielded minimal enhancement, suggesting that ripmaps
overcome model capacity limitations. This is evidenced by the
fact that isotropic spheres project similarly onto different planes,
whereas anisotropic 3D Gaussian footprints vary across planes.

4.6 Limitations
Despite the excellent performance on bounded datasets, our repre-
sentation still faces challenges for unbounded scenes. We suppose
two possible reasons that cause difficulties in 2D-style representa-
tions. First, non-vaguely-convex shapes lead to information from
self-occluded locations being projected onto the same 2D area.
Second, the space warping mechanism proposed in Mip-NeRF360
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PSNR↑ SSIM↑ LPIPS↓
lego flask mic filter Avg lego flask mic filter Avg lego flask mic filter Avg

Zip-NeRF [Barron et al. 2023] 35.95 37.79 39.15 38.45 37.84 0.991 0.992 0.997 0.991 0.993 0.014 0.012 0.008 0.021 0.014
Tri-MipRF [Hu et al. 2023] 37.19 37.38 40.30 36.58 38.09 0.991 0.991 0.996 0.985 0.991 0.012 0.013 0.006 0.022 0.013
Rip-NeRF (Ours) 37.85 38.46 42.07 37.17 38.89 0.993 0.993 0.998 0.986 0.992 0.010 0.010 0.004 0.020 0.011

Table 3: Quantitative results on our newly captured real-world dataset. The highest performance is marked in red.

PSNR↑ SSIM↑ LPIPS↓
Train ↓ Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg.

Tri-MipRF [Hu et al. 2023] 5.5 mins 33.57 35.21 35.96 36.46 35.30 0.962 0.975 0.982 0.987 0.976 0.052 0.029 0.019 0.013 0.028
Rip-NeRF, PS3 (w/o PSP) 25.0 mins 33.32 34.65 35.25 35.92 34.79 0.959 0.972 0.979 0.985 0.974 0.056 0.032 0.021 0.014 0.031
Rip-NeRF, PS4 25.5 mins 32.76 34.14 34.63 34.63 34.06 0.950 0.961 0.964 0.970 0.961 0.066 0.042 0.031 0.028 0.041
Rip-NeRF, PS6 26.5 mins 33.86 35.37 36.34 36.78 35.59 0.963 0.974 0.982 0.986 0.976 0.051 0.029 0.019 0.013 0.028
Rip-NeRF w/o RE 8.5 mins 33.64 35.26 36.13 36.68 35.43 0.962 0.974 0.981 0.987 0.976 0.052 0.030 0.020 0.013 0.029
Rip-NeRF25k 32.0 mins 34.30 35.94 36.92 37.47 36.16 0.966 0.978 0.984 0.989 0.979 0.045 0.025 0.016 0.011 0.024
Rip-NeRF (Ours) 2.6 hrs 35.30 37.01 38.07 38.54 37.23 0.973 0.983 0.988 0.991 0.984 0.037 0.019 0.011 0.008 0.019

Table 4: Quantitative Comparison of Rip-NeRF and its ablations on the Multi-Scale Blender Dataset [Barron et al. 2021]. The
best, second-best, and third-best results are marked in red, orange, and yellow, respectively.

[Barron et al. 2022] encourages more locations along a non-linear
curve, compared to a straight line, to be projected onto the same
2D area, which is difficult for the explicit 2D feature grid to charac-
terize. To address these challenges, perhaps a more advanced 3D to
2D mapping function is required to be explored.

5 CONCLUSION
In this work, we present a Ripmap-Encoded Platonic Solid represen-
tation for neural radiance fields, named Rip-NeRF. Our Rip-NeRF
can render high-fidelity anti-aliasing images while maintaining
efficiency, enabled by the proposed Platonic Solid Projection and
Ripmap Encoding. The Platonic Solid Projection factorizes the 3D
space onto the unparalleled faces of a certain Platonic solid, such
that the anisotropic 3D areas can be projected onto planes with
distinguishable characterization. And the Ripmap Encoding enables
featurizing the projected anisotropic areas both precisely and effi-
ciently by the anisotropic area-sampling. These two components
work together for precisely and efficiently featurizing anisotropic
3D areas. It achieves state-of-the-art rendering quality on both
synthetic datasets and real-world captures, particularly excelling
in the fine details of structures and textures, which verifies the
effectiveness of the proposed Platonic Solid Projection and Ripmap
Encoding.
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Ground Truth Rip-NeRF (Ours) Tri-MipRF Zip-NeRF

24.28/0.812 21.44/0.744 21.63/0.795

25.40/0.852 24.45/0.834 22.12/0.846

29.50/0.942 25.86/0.905 25.16/0.906

29.06/0.794 24.45/0.527 25.03/0.560

29.62/0.898 27.37/0.834 28.45/0.884

21.05/0.884 19.21/0.645 19.64/0.694

Figure 6: Qualitative comparison of the full-resolution (close-up views) renderings on themulti-scale Blender dataset. PSNR/SSIM
values are shown at the bottom of each result.
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Figure 7: Qualitative comparison of the multi-resolution evaluation on the mic scene from the multi-scale Blender dataset.
PSNR values are shown in the bottom right corners of each result.

Ground Truth Rip-NeRF (Ours) Tri-MipRF Zip-NeRF

26.54/0.875 26.44/0.845 26.31/0.859

27.95/0.922 25.66/0.859 24.95/0.840

23.21/0.904 22.01/0.870 21.31/0.865

Figure 8: Qualitative results of our Rip-NeRF, Tri-MipRF [Hu et al. 2023], and Zip-NeRF [Barron et al. 2023] on real-world
captures. PSNR/SSIM values are shown at the bottom of each result.
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A CONE CASTING
To characterize an anisotropic sub-volume, we follow the procedure
introduced in Mip-NeRF [Barron et al. 2021] to model the conical
frustum as a 3D Gaussian N(𝝁, 𝚺), where 𝝁 and 𝚺 are the mean
and covariance, respectively. Given a conical frustum defined by its
near and far 𝑡 values [𝑡0, 𝑡1] along the ray direction d originating
from the camera center o, and the cone radius ¤𝑟 at the image plane,
we can compute 𝝁 and 𝚺 as follows:

First, we calculate the mean 𝜇𝑡 and variance 𝜎2𝑡 of the frustum
along the ray direction, as well as the variance 𝜎2𝑟 perpendicular to
the ray direction:

𝜇𝑡 =

3
(
𝑡41 − 𝑡40

)
4
(
𝑡31 − 𝑡30

) , 𝜎2𝑡 =

3
(
𝑡51 − 𝑡50

)
5
(
𝑡31 − 𝑡30

) − 𝜇2𝑡 , 𝜎
2
𝑟 = ¤𝑟2

©«
3
(
𝑡51 − 𝑡50

)
20

(
𝑡31 − 𝑡30

) ª®®¬.
(6)

Then, we transform these quantities from the local coordinate
frame of the conical frustum to the world coordinate frame, obtain-
ing the mean 𝝁 and covariance 𝚺 of the 3D Gaussian:

𝝁 = o + 𝜇𝑡d, 𝚺 = 𝜎2𝑡

(
ddT

)
+ 𝜎2𝑟

(
I − ddT

∥d∥22

)
, (7)

where I is the identity matrix. The resulting 3D Gaussian N(𝝁, 𝚺)
approximates the geometry of the conical frustum and serves as
the input for the subsequent Platonic Solid Projection and Ripmap
Encoding steps in Rip-NeRF.

B TETRA-LINEAR INTERPOLATION
The tetra-linear interpolation process in Ripmap Encoding involves
querying the feature values from the surrounding vertices in the
4D space defined by the position (𝑝𝑥 , 𝑝𝑦) and level (𝑙𝑥 , 𝑙𝑦). Given
a query point (𝑝𝑥 , 𝑝𝑦, 𝑙𝑥 , 𝑙𝑦), we first identify the 16 neighboring
vertices in the 4D space. Let (𝑝𝑖𝑥 , 𝑝

𝑗
𝑦, 𝑙

𝑘
𝑥 , 𝑙

𝑚
𝑦 ) denote the neigh-

boring vertex, where 𝑖, 𝑗, 𝑘,𝑚 ∈ {0, 1} represent the binary indices
in each dimension. The feature value at the query point is then
interpolated using the weighted sum of the feature values at these
neighboring vertices:

𝒇 =

1∑︁
𝑖=0

1∑︁
𝑗=0

1∑︁
𝑘=0

1∑︁
𝑚=0

𝑤𝑖 𝑗𝑘𝑚 · 𝒇 𝑖 𝑗𝑘𝑚, (8)

where 𝒇 𝑖 𝑗𝑘𝑚 = R𝑙𝑘𝑥 , 𝑙
𝑚
𝑦 (𝑝𝑖𝑥 , 𝑝

𝑗
𝑦) represents the feature value at the

neighboring vertex (𝑝𝑖𝑥 , 𝑝
𝑗
𝑦, 𝑙

𝑘
𝑥 , 𝑙

𝑚
𝑦 ), and𝑤𝑖 𝑗𝑘𝑚 is the interpolation

weight calculated based on the distances between the query point
and the neighboring vertex in each dimension:

𝑤𝑖 𝑗𝑘𝑚 =
∏

𝑑∈{𝑥,𝑦}
𝑡 ∈{𝑝,𝑙 }

(1 − |𝑡𝑑 − 𝑡
𝑖 𝑗

𝑑
|),

(9)

where 𝑡𝑖 𝑗
𝑑

represents the neighboring vertex coordinates along di-
mension 𝑑 , with 𝑖 and 𝑗 being the binary indices for position and
level, respectively. By performing this tetra-linear interpolation, we
obtain a smooth and continuous feature representation 𝒇 for the
anisotropic 2D Gaussian at the query point (𝑝𝑥 , 𝑝𝑦, 𝑙𝑥 , 𝑙𝑦) in the
Ripmap Encoding. This interpolation process allows for efficient

querying of the Ripmap Encoding while considering the anisotropic
nature of the Gaussian footprint.

C IMPLEMENTATION DETAILS
C.1 Tiny MLP
Our tiny MLP nonlinearly maps the Ripmap-Encoding feature vec-
tor f and the view direction d to the density 𝜏 and color 𝑐 of the
sampled sphere S, aligning with Tri-MipRF [Hu et al. 2023] for con-
sistency. The dimension of f is 160, considering the ripmapsR shape
of 512 × 512 × 16 and the use of 10 unparalleled icosahedron faces.
The first two MLP layers process f to yield 𝜏 and a 15-dimensional
geometric feature fgeo. The view direction d, encoded via spherical
harmonics, is combined with fgeo in the final three layers to esti-
mate the view-dependent color 𝑐 , similar to [Müller et al. 2022]. The
MLP’s width is set to 128, using ReLU activations (except for the
output layer of 𝜏 , where a truncated exponential function is used,
following [Müller et al. 2022]). This efficient MLP, implemented
with tiny-cuda-nn, is optimized for fused and half-precision opera-
tions.

C.2 Sampling Strategy
Sample points are selected within a sphere of radius 𝑟 , predefined
for each scene. For the nerf-synthetic dataset scenes 𝑟 is set to 1.5.
We adopt the OccupancyGrid from nerfacc [Li et al. 2022] as our
sampler, setting density to zero for points outside the bounding
sphere. The occupancy threshold was 0.005 for all experiments.

C.3 Optimization
Optimizable parameters in Rip-NeRF include the tiny MLP’s model
weights and the ripmaps R. Model weights are initialized follow-
ing [Glorot and Bengio 2010], while ripmaps R start from a uniform
distribution over [−0.01, 0.01]. We use AdamW [Loshchilov and
Hutter 2019] for optimization, scaling the base learning rate for R
by 10x due to its direct scene representation role. The base learning
rate is 2 × 10−3, reduced by 0.6x at steps 60K, 90K, 100K, and 108K,
over a total of 120K iterations. Following [Müller et al. 2022], we
dynamically adjust the batch size to maintain approximately 256K
spheres per batch.

D DETAILED QUANTITATIVE RESULTS
For a more detailed quantitative per-scene analysis, Table 5 and Ta-
ble 6 showcases our Rip-NeRF against representative baseline meth-
ods training on the multi-scale and single-scale blender dataset.

E MORE QUALITATIVE RESULTS
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PSNR ↑
chair drums ficus hotdog lego materials mic ship Average

NeRF w/o Larea 29.92 23.27 27.15 32.00 27.75 26.30 28.40 26.46 27.66
NeRF [Mildenhall et al. 2020] 33.39 25.87 30.37 35.64 31.65 30.18 32.60 30.09 31.23
Mip-NeRF [Barron et al. 2021] 37.14 27.02 33.19 39.31 35.74 32.56 38.04 33.08 34.51
TensoRF [Chen et al. 2022] 32.47 25.37 31.16 34.96 31.73 28.53 31.48 29.08 30.60
Instant-NGP [Müller et al. 2022] 32.95 26.43 30.41 35.87 31.83 29.31 32.58 30.23 31.20
Tri-MipRF [Hu et al. 2023] 38.36 28.66 34.29 40.02 36.57 32.22 38.46 33.80 35.30
Zip-NeRF [Barron et al. 2023] 39.52 29.46 35.54 41.64 37.25 34.39 39.69 36.08 36.70
3DGS [Kerbl et al. 2023] 33.04 25.52 29.21 35.48 29.66 27.25 31.15 29.12 30.05
Rip-NeRF, PS3 (w/o PSP) 37.64 28.39 33.58 39.45 35.98 31.91 38.11 33.20 34.79
Rip-NeRF, PS4 37.73 28.56 34.58 38.85 34.50 31.66 38.29 28.28 34.06
Rip-NeRF, PS6 38.80 29.07 35.27 40.25 36.27 32.20 39.32 33.55 35.59
Rip-NeRF, w/o PE 38.99 28.92 35.21 39.97 35.87 32.32 38.92 33.24 35.43
Rip-NeRF25k 39.36 29.40 35.89 40.82 36.94 32.66 40.07 34.13 36.16
Rip-NeRF (ours) 40.08 29.88 36.61 41.98 38.36 33.79 40.94 36.18 37.23

SSIM ↑
chair drums ficus hotdog lego materials mic ship Average

NeRF w/o Larea 0.944 0.891 0.942 0.959 0.926 0.934 0.958 0.861 0.927
NeRF [Mildenhall et al. 2020] 0.971 0.932 0.971 0.979 0.965 0.967 0.980 0.900 0.958
MipNeRF [Barron et al. 2021] 0.988 0.945 0.984 0.988 0.984 0.977 0.993 0.922 0.973
TensoRF [Chen et al. 2022] 0.967 0.930 0.974 0.977 0.967 0.957 0.978 0.895 0.956
Instant-ngp [Müller et al. 2022] 0.971 0.940 0.973 0.979 0.966 0.959 0.981 0.904 0.959
Tri-MipRF [Hu et al. 2023] 0.991 0.957 0.986 0.990 0.987 0.972 0.993 0.936 0.976
Zip-NeRF [Barron et al. 2023] 0.994 0.968 0.991 0.993 0.990 0.984 0.995 0.966 0.985
3DGS [Kerbl et al. 2023] 0.979 0.944 0.970 0.984 0.967 0.959 0.979 0.922 0.963
Rip-NeRF, PS3 (w/o PSP) 0.989 0.955 0.984 0.988 0.984 0.969 0.992 0.928 0.974
Rip-NeRF, PS4 0.984 0.951 0.987 0.983 0.976 0.953 0.988 0.868 0.961
Rip-NeRF, PS6 0.992 0.959 0.989 0.990 0.984 0.972 0.994 0.930 0.976
Rip-NeRF, w/o PE 0.992 0.959 0.989 0.989 0.983 0.973 0.993 0.929 0.976
Rip-NeRF25k 0.993 0.963 0.990 0.991 0.987 0.976 0.995 0.939 0.979
Rip-NeRF (ours) 0.994 0.966 0.992 0.993 0.991 0.980 0.996 0.960 0.984

LPIPS ↓
chair drums ficus hotdog lego materials mic ship Average

NeRF w/o Larea 0.035 0.069 0.032 0.028 0.041 0.045 0.031 0.095 0.052
NeRF [Mildenhall et al. 2020] 0.028 0.059 0.026 0.024 0.035 0.033 0.025 0.085 0.044
MipNeRF [Barron et al. 2021] 0.011 0.044 0.014 0.012 0.013 0.019 0.007 0.062 0.026
TensoRF [Chen et al. 2022] 0.042 0.075 0.032 0.035 0.036 0.063 0.040 0.112 0.054
Instant-ngp [Müller et al. 2022] 0.035 0.066 0.029 0.028 0.040 0.051 0.032 0.095 0.047
Tri-MipRF [Hu et al. 2023] 0.013 0.049 0.017 0.016 0.014 0.036 0.010 0.071 0.028
Zip-NeRF [Barron et al. 2023] 0.017 0.038 0.010 0.013 0.013 0.019 0.008 0.049 0.021
3DGS [Kerbl et al. 2023] 0.024 0.056 0.029 0.020 0.037 0.039 0.024 0.082 0.039
Rip-NeRF, PS3 (w/o PSP) 0.015 0.051 0.020 0.019 0.016 0.039 0.012 0.077 0.031
Rip-NeRF, PS4 0.015 0.052 0.016 0.023 0.028 0.042 0.010 0.146 0.042
Rip-NeRF, PS6 0.012 0.046 0.013 0.015 0.017 0.036 0.009 0.077 0.028
Rip-NeRF, w/o PE 0.011 0.046 0.013 0.017 0.018 0.034 0.009 0.081 0.029
Rip-NeRF25k 0.010 0.041 0.011 0.013 0.013 0.029 0.007 0.069 0.024
Rip-NeRF (ours) 0.009 0.037 0.010 0.010 0.009 0.024 0.006 0.047 0.019

Table 5: Quantitative Per-Scene Results on the Multi-Scale Blender Dataset: This table presents the arithmetic mean of each
metric, averaged over the four scales of the dataset for individual scenes. Performance rankings are highlighted with color
coding: the best, second-best, and third-best results are in red, orange, and yellow, respectively.
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PSNR ↑
chair drums ficus hotdog lego materials mic ship Average

SRN [Sitzmann et al. 2019] 29.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60 22.26
LLFF [Mildenhall et al. 2019] 28.72 21.13 21.79 31.41 24.54 20.72 27.48 23.22 24.88
Neural Volumes [Lombardi et al. 2019] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93 26.05
NeRF [Mildenhall et al. 2020] 34.17 25.08 30.39 36.82 33.31 30.03 34.78 29.30 31.74
Mip-NeRF [Barron et al. 2021] 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41 33.09
Mip-NeRF 360 [Barron et al. 2022] 35.65 25.60 33.19 37.71 36.10 29.90 36.52 31.26 33.24
DVGO [Sun et al. 2022] 34.09 25.44 32.78 36.74 34.64 29.57 33.20 29.13 31.95
TensoRF [Chen et al. 2022] 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77 33.14
Instant-NGP [Müller et al. 2022] 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10 33.18
Tri-MipRF [Hu et al. 2023] 36.53 26.73 34.93 38.46 36.61 30.63 37.56 29.74 33.90
Zip-NeRF [Barron et al. 2023] 36.19 27.37 36.08 39.18 36.60 32.63 36.74 33.27 34.76
3DGS [Kerbl et al. 2023] 36.88 26.80 36.09 38.72 36.82 30.99 36.69 32.52 34.44
Rip-NeRF25k 37.31 27.46 36.45 39.04 37.72 31.24 39.28 30.88 34.92
Rip-NeRF (ours) 37.58 27.76 36.87 39.77 38.29 31.80 39.91 31.56 35.44

SSIM ↑
chair drums ficus hotdog lego materials mic ship Average

SRN [Sitzmann et al. 2019] 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757 0.846
LLFF [Mildenhall et al. 2019] 0.948 0.890 0.896 0.965 0.911 0.890 0.964 0.823 0.911
Neural Volumes [Lombardi et al. 2019] 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784 0.893
NeRF [Mildenhall et al. 2020] 0.975 0.925 0.967 0.979 0.968 0.953 0.987 0.869 0.953
Mip-NeRF [Barron et al. 2021] 0.981 0.932 0.980 0.982 0.978 0.959 0.991 0.882 0.961
Mip-NeRF 360 [Barron et al. 2022] 0.983 0.931 0.979 0.982 0.980 0.949 0.991 0.893 0.961
DVGO [Sun et al. 2022] 0.977 0.930 0.978 0.980 0.976 0.951 0.983 0.879 0.957
TensoRF [Chen et al. 2022] 0.985 0.937 0.982 0.982 0.983 0.952 0.988 0.895 0.963
Instant-NGP [Müller et al. 2022] 0.979 0.937 0.981 0.982 0.982 0.951 0.990 0.896 0.963
Tri-MipRF [Hu et al. 2023] 0.987 0.940 0.984 0.984 0.983 0.952 0.992 0.886 0.964
Zip-NeRF [Barron et al. 2023] 0.988 0.957 0.990 0.988 0.985 0.974 0.993 0.945 0.977
3DGS [Kerbl et al. 2023] 0.990 0.961 0.991 0.988 0.986 0.969 0.993 0.918 0.975
Rip-NeRF25k 0.989 0.948 0.989 0.986 0.985 0.960 0.995 0.898 0.969
Rip-NeRF (ours) 0.990 0.950 0.990 0.988 0.987 0.964 0.995 0.918 0.973

LPIPS ↓
chair drums ficus hotdog lego materials mic ship Average

SRN [Sitzmann et al. 2019] 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299 0.170
LLFF [Mildenhall et al. 2019] 0.064 0.126 0.130 0.061 0.110 0.117 0.084 0.218 0.114
Neural Volumes [Lombardi et al. 2019] 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276 0.160
NeRF [Mildenhall et al. 2020] 0.026 0.071 0.032 0.030 0.031 0.047 0.012 0.150 0.050
Mip-NeRF [Barron et al. 2021] 0.021 0.065 0.020 0.027 0.021 0.040 0.009 0.138 0.043
Mip-NeRF 360 [Barron et al. 2022] 0.018 0.069 0.022 0.024 0.018 0.053 0.011 0.135 0.042
DVGO [Sun et al. 2022] 0.027 0.077 0.024 0.034 0.028 0.058 0.017 0.161 0.053
TensoRF [Chen et al. 2022] 0.022 0.073 0.022 0.032 0.018 0.058 0.015 0.138 0.047
Instant-NGP [Müller et al. 2022] 0.022 0.071 0.023 0.027 0.017 0.060 0.010 0.132 0.045
Tri-MipRF [Hu et al. 2023] 0.021 0.076 0.025 0.031 0.019 0.067 0.012 0.148 0.050
Zip-NeRF [Barron et al. 2023] 0.016 0.048 0.012 0.019 0.017 0.036 0.007 0.099 0.032
3DGS [Kerbl et al. 2023] 0.010 0.035 0.009 0.018 0.013 0.029 0.005 0.104 0.028
Rip-NeRF25k 0.017 0.064 0.016 0.027 0.016 0.053 0.008 0.135 0.042
Rip-NeRF (ours) 0.016 0.062 0.015 0.022 0.014 0.046 0.006 0.111 0.037

Table 6: Quantitative Per-Scene Results on the Single-Scale Blender Dataset: This table presents the arithmetic mean of each
metric, averaged over the four scales of the dataset for individual scenes. Performance rankings are highlighted with color
coding: the best, second-best, and third-best results are in red, orange, and yellow, respectively.
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Figure 9: More qualitative rendering results of Zip-NeRF, Tri-MipRF, and our Rip-NeRF on the multi-scale Blender dataset.
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